50 research outputs found

    Autonomous Reinforcement of Behavioral Sequences in Neural Dynamics

    Full text link
    We introduce a dynamic neural algorithm called Dynamic Neural (DN) SARSA(\lambda) for learning a behavioral sequence from delayed reward. DN-SARSA(\lambda) combines Dynamic Field Theory models of behavioral sequence representation, classical reinforcement learning, and a computational neuroscience model of working memory, called Item and Order working memory, which serves as an eligibility trace. DN-SARSA(\lambda) is implemented on both a simulated and real robot that must learn a specific rewarding sequence of elementary behaviors from exploration. Results show DN-SARSA(\lambda) performs on the level of the discrete SARSA(\lambda), validating the feasibility of general reinforcement learning without compromising neural dynamics.Comment: Sohrob Kazerounian, Matthew Luciw are Joint first author

    Hedonic Quality or Reward? A Study of Basic Pleasure in Homeostasis and Decision Making of a Motivated Autonomous Robot

    Get PDF
    © The Author (s) 2016. Published by SAGE. This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 License (http://www.creativecommons.org/licenses/by/3.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).We present a robot architecture and experiments to investigate some of the roles that pleasure plays in the decision making (action selection) process of an autonomous robot that must survive in its environment. We have conducted three sets of experiments to assess the effect of different types of pleasure---related versus unrelated to the satisfaction of physiological needs---under different environmental circumstances. Our results indicate that pleasure, including pleasure unrelated to need satisfaction, has value for homeostatic management in terms of improved viability and increased flexibility in adaptive behavior.Peer reviewedFinal Published versio

    Arousal regulation and affective adaptation to human responsiveness by a robot that explores and learns a novel environment

    Get PDF
    Copyright © 2014 Hiolle, Lewis and Cañamero. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.In the context of our work in developmental robotics regarding robot-human caregiver interactions, in this paper we investigate how a "baby" robot that explores and learns novel environments can adapt its affective regulatory behavior of soliciting help from a "caregiver" to the preferences shown by the caregiver in terms of varying responsiveness. We build on two strands of previous work that assessed independently (a) the differences between two "idealized" robot profiles-a "needy" and an "independent" robot-in terms of their use of a caregiver as a means to regulate the "stress" (arousal) produced by the exploration and learning of a novel environment, and (b) the effects on the robot behaviors of two caregiving profiles varying in their responsiveness-"responsive" and "non-responsive"-to the regulatory requests of the robot. Going beyond previous work, in this paper we (a) assess the effects that the varying regulatory behavior of the two robot profiles has on the exploratory and learning patterns of the robots; (b) bring together the two strands previously investigated in isolation and take a step further by endowing the robot with the capability to adapt its regulatory behavior along the "needy" and "independent" axis as a function of the varying responsiveness of the caregiver; and (c) analyze the effects that the varying regulatory behavior has on the exploratory and learning patterns of the adaptive robot.Peer reviewe

    Online Learning for Attention, Recognition, and Tracking by a Single Developmental Framework

    No full text
    It is likely that human-level online learning for vision will require a brain-like developmental model. We present a general purpose model, called the Self-Aware and Self-Effecting (SASE) model, characterized by internal sensation and action. Rooted in the biological genomic equivalence principle, this model is a general-purpose cell-centered inplace learning scheme to handle different levels of development and operation, from the cell level all the way to the brain level. It is unknown how the brain self-organizes its internal wiring without a holistically-aware central controller. How does the brain develop internal object representations? How do such representations enable tightly intertwined attention and recognition in the presence of complex backgrounds? Internally in SASE, local neural learning uses only the co-firing between the pre-synaptic and post-synaptic activities. Such a two-way representation automatically boosts action-relevant components in the sensory inputs (e.g., foreground vs. background) by increasing the chance of only action-related feature detectors to win in competition. It enables develop in a “skull-closed” fashion. We discuss SASE networks called Where-What networks (WWN) for the open problem of general purpose online attention and recognition with complex backgrounds. In WWN, desired invariance and specificity emerge at each of the what and where motor ends without an internal master map. WWN allows both type-based top-down attention and location-based top-down attention, to attend and recognize individual objects from complex backgrounds (which may include other objects). It is proposed that WWN deals with any real-world foreground objects and any complex backgrounds. 1
    corecore